Crystal data

C₉H₉N₃O₂S₂ $M_r = 255.31$ Monoclinic $P2_{1}/n$ a = 10.399(2) Å b = 15.132(3) Å c = 14.280(3) Å $\beta = 91.21(3)^{\circ}$ V = 2246.6 (8) Å³ Z = 8 $D_x = 1.51 \text{ Mg m}^{-3}$ D_m not measured

Data collection

ections

Refinement

Refinement on F^2 $(\Delta/\sigma)_{\rm max} = -0.038$ R(F) = 0.046 $wR(F^2) = 0.079$ S = 0.8583936 reflections 319 parameters H atoms: see below $w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm max} = 0.256 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.373 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Mo $K\alpha$ radiation

Cell parameters from 2749

 $0.15 \times 0.10 \times 0.08 \text{ mm}$

 $\lambda = 0.71073$ Å

reflections $\theta = 3.05 - 25.00^{\circ}$

 $\mu = 0.462 \text{ mm}^{-1}$

T = 150(2) K

Colourless

Block

Table 1. Hydrogen-bonding geometry (Å, $^{\circ}$)

$D - H \cdot \cdot \cdot A$	<i>D</i> —H	$\mathbf{H} \cdots \mathbf{A}$	$D \cdot \cdot \cdot A$	$D = \mathbf{H} \cdot \cdot \cdot A$
N11—H10···N12 ⁱ	0.90(2)	2.14 (2)	3.016 (4)	165 (3)
$N11 - H10 \cdot \cdot \cdot O11^{1}$	0.90(2)	2.54 (3)	3.211 (4)	132 (3)
N11-H11···O22 ¹¹	0.93 (2)	2.10(2)	3.010(4)	167 (5)
N13—H17· · · O21 ¹¹¹	0.86	2.04	2.865 (4)	161
N21—H20· · · O12 [™]	0.90(2)	2.24 (2)	3.061 (4)	152(3)
N21—H21···O21`	0.90(2)	2.37 (3)	3.116 (4)	141 (3)
N21—H21···N22`	0.90(2)	2.44 (2)	3.267 (4)	154 (3)
N23—H27···O11	0.86	1.94	2.794 (4)	173

Symmetry codes: (i) $\frac{1}{2} - x, \frac{1}{2} + y, -\frac{1}{2} - z$; (ii) -x, 1 - y, -z; (iii) $\frac{1}{2} + x, \frac{1}{2} - y, z - \frac{1}{2};$ (iv) -x, -y, -z; (v) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z;$ (vi) $\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z.$

The H atoms on N11 and N21 were refined isotropically using DFIX restraints (Sheldrick, 1997); all other H atoms were treated as riding atoms.

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998). Cell refinement: DENZO and COL-LECT. Data reduction: DENZO and COLLECT. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: CAMERON (Chemical Crystallography Laboratory, 1993). Software used to prepare material for publication: SHELXL97.

We thank the EPSRC for support of the crystallography facilities at Southampton University.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1566). Services for accessing these data are described at the back of the journal.

References

- Anwar, J., Tarling, S. E. & Barnes, P. (1989). J. Pharm. Sci. 78, 337-342.
- Babilev, F. V., Bel'skii, V. K., Simonov, A. & Arzamastsev, A. P. (1987). Khim. Farm. Zh. 21, 1275-1280.
- Blagden, N., Davey, R. J., Lieberman, H. F., Williams, L., Payne, R., Roberts, R., Rowe, R. & Docherty, R. (1998). J. Chem. Soc. Faraday Trans. 94, 1035-1044.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Burger, A. & Dialer, D. (1983). Pharm. Acta Helv. 58, 72-78.
- Chan, F. C., Anwar, J., Cernik, R., Barnes, P. & Wilson, R. M. (1999). J. Appl. Cryst. 32, 436-441.
- Chemical Crystallography Laboratory (1993). CAMERON. A Molecular Graphics Package. Chemical Crystallography Laboratory, University of Oxford, England.
- Hooft, R. (1998). COLLECT Software. Nonius BV, Delft, The Netherlands.
- Hughes, D. S., Hursthouse, M. B., Lancaster, R. W., Tavener, S., Threlfall, T. L. & Turner, P. (1997). J. Pharm. Pharmacol. 49, S4, 20
- Kruger, G. J. & Gafner, G. (1971). Acta Cryst. B27, 326-333.
- Kruger, G. J. & Gafner, G. (1972). Acta Cryst. B28, 272-283.
- Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-326.
- Sheldrick. G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELX97. Release 97-2. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1999). C55, 1833-1835

N-(4-Chlorophenyl)-N-methylcyanamide

IAN D. CUNNINGHAM,^a MARK E. LIGHT^b AND MICHAEL B. HURSTHOUSE^b

^aDepartment of Chemistry, School of Physical Sciences, University of Surrey, Guilford GU2 5XH, England, and ^bUniversity of Southampton, Department of Chemistry, Highfield, Southampton SO17 1BJ, England. E-mail: light@soton.ac.uk

(Received 7 July 1999; accepted 28 July 1999)

Abstract

An X-ray structural analysis of the title compound, $C_8H_7CIN_2$, shows an essentially planar molecule, but with an unusually long aryl-C to planar-N bond.

Comment

In the course of on-going investigations of N-arylcyanoguanidines, the title compound, (1), was prepared and isolated. In simple N-arylcyanoguanidines such as N-cyano-N'-(4-methoxyphenyl)guanidine, (2), the arylbearing amino lone pair conjugates predominantly with the cyanoguanidine part allowing the aryl group to tilt out of plane (Cunningham et al., 1997). However, when N-methylation makes a planar system untenable due to steric hindrance, the aryl-bearing amino lone pair conjugates with the aryl group and the arylamino unit is tilted out of plane as in N-(4-chlorophenyl)-N'cyano-N, N'', N''-trimethylguanidine, (3) (Cunningham, Coles et al., 1999). The title compound is a rather more simple case of a molecule with the potential for such conjugative dichotomy and we undertook an X-ray crystallographic structure determination of (1).

The structure (Fig. 1, arbitrary numbering) shows an essentially planar system, as indicated by the torsional angles C3-C4-N1-C7 and C5-C4-N1-C8 in Table 1. This might be expected to reflect the usual conjugation between an amino lone pair and an aromatic ring. However, the C4-N1 bond length of 1.412 (3) Å seems too long for a standard C_{aryl} -N-(Csp³)₂ substructure (typically 1.371 Å) (Allen et al., 1987). This suggests that the planarity of the molecule is due more to the requirement for a regular packing pattern than to a conjugative effect. Estimation of the bond order between N1 and C8 is difficult in the absence of comparable data. However, the evidence of the 'typical' bond length [1.139(3) Å] for the C=N (Allen *et al.*, 1987) suggests that resonance delocalization of the lone pair towards CN is small. This reinforces the concept of cyano as an electron-withdrawing group by induction rather than resonance. If so, and given the lack of Ar-N conjugation, it suggests a planar tri-substituted N atom bearing only inductive substituents.

Fig. 1. The molecular structure of (1) showing displacement ellipsoids at 30% probability.

Experimental

The compound (1) was isolated by column chromatography on silica gel following treatment of N-(4-chlorophenyl)-N'-cyano-

guanidine with butyllithium and methyl iodide in tetrahydrofuran (Cunningham, Cox et al., 1999).

Mo $K\alpha$ radiation

Cell parameters from 11 814

 $\lambda = 0.71073 \text{ Å}$

reflections $\theta = 3.24 - 25.03^{\circ}$

 $\mu = 0.393 \text{ mm}^{-1}$

 $0.2 \times 0.1 \times 0.1$ mm

T = 293 (2) K

 $I > 2\sigma(I)$

Colourless

Block

Crystal data

C₈H₇ClN₂ $M_r = 166.61$ Monoclinic C2/ca = 17.3562(19) Å b = 6.0765 (6) Å c = 15.8695(17) Å $\beta = 98.732 (4)^{\circ}$ V = 1654.3 (3) Å³ Z = 8 $D_x = 1.338 \text{ Mg m}^{-3}$ D_m not measured

Data collection

- Enraf-Nonius KappaCCD 798 reflections with area-detector diffractometer $R_{\rm int} = 0.088$ $\theta_{\rm max} = 25.03^{\circ}$ ϕ and ω scans to fill Ewald $h = -20 \rightarrow 20$ sphere Absorption correction: $k = -7 \rightarrow 7$ empirical (SORTAV;
- $l = -18 \rightarrow 18$ Blessing, 1997) Intensity decay: none $T_{\rm min} = 0.926, T_{\rm max} = 0.962$ 11 814 measured reflections
- 1449 independent reflections

Refinement

 $w = 1/[\sigma^2(F_o^2) + (0.0753P)^2]$ Refinement on F^2 where $P = (F_o^2 + 2F_c^2)/3$ R(F) = 0.049 $(\Delta/\sigma)_{\rm max} = 0.001$ $wR(F^2) = 0.141$ $\Delta \rho_{\rm max} = 0.11 \text{ e } \text{\AA}^{-3}$ S = 0.993 $\Delta \rho_{\rm min}$ = -0.24 e Å⁻³ 1449 reflections Extinction correction: none 101 parameters Scattering factors from H-atom parameters International Tables for constrained Crystallography (Vol. C)

Table 1. Selected geometric parameters (Å, °)

NI-C8	1.331 (4)	C8—N2	1.139 (3)
N1-C4	1.412 (3)		
C8—N1—C4	119.4 (2)	C4—N1—C7	122.6 (2)
C8-N1-C7	118.0(2)	N2	179.5 (3)
C7—N1—C4—C3	-4.5(4)	C8-N1-C4-C5	-2.5(4)

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998). Cell refinement: DENZO and COL-LECT. Data reduction: DENZO, COLLECT and MAXUS (Mackay et al., 1998). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: OR-TEPIII (Burnett & Johnson, 1996). Software used to prepare material for publication: WinGX (Farrugia, 1998).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1331). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.

- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Cunningham, I. D., Coles, S. J., Hursthouse, M. B., Howlin, B. J., Johnson, A. & Edge, C. M. (1999). J. Chem. Soc. Chem. Commun. Submitted.
- Cunningham, I. D., Cox, B. G., Wan, N. C., Povey, D. C. & Smith, G. W. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 693–697.
- Cunningham, I. D., Wan, N. C., Povey, D. C., Smith, G. W. & Cox, B. G. (1997). Acta Cryst. C53, 984–985.
- Farrugia, L. J. (1998). WinGX. A Windows Program for Crystal Structure Analysis. University of Glasgow, Scotland.
- Hooft, R. (1998). COLLECT. Data Collection Software. Nonius BV, The Netherlands.
- Mackay, S., Gilmore, C. J., Edwards, C., Tremayne, M., Stewart, N. & Shankland, K. (1998). MAXUS. A Computer Program for the Solution and Refinement of Crystal Structures from Diffraction Data. University of Glasgow, Scotland.
- Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-767.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELX97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1999). C55, 1835-1837

Filic-3-ene, a pentacyclic triterpene from *Davallia canariensis*

Javier González-Platas,^{*a*} Catalina Ruiz-Pérez,^{*a*} Antonio G. González,^{*b*} Margarita Hernández Silva,^{*b*} Candelaria García,^{*b*} M. Carmen Alfayate^{*b*} and Jaime Bermejo^{*b*}

^aGrupo de Rayos X, Departamento Física Fundamental II, Universidad de La Laguna, Avda Astrofísico Fco Sánchez s/n, E-38204, La Laguna, Tenerife, Spain, and ^bInstituto de Productos Naturales y Agrobiología del CSIC, Instituto Universitario de Bio-Orgánica 'Antonio González', Avda Astrofísico Fco Sánchez 2, E-38204, La Laguna, Tenerife, Spain. E-mail: javiergp@valmap.dfis.ull.es

(Received 24 May 1999; accepted 15 July 1999)

Abstract

The triterpene filic-3-ene, 3-isopropyl-3a,5a,7a,8,11b,13ahexamethyl-2,3,3a,4,5,5a,5b,6,7,7a,10,11,11a,11b,12,-13,13a,13b-octadecahydro-1*H*-cyclopenta[α]chrysene, C₃₀H₅₀, was isolated from *Davallia canariensis*, a fern from Tenerife (Canary Islands), and its structure was elucidated. It was confirmed to be a pentacyclic molecule, with four six-membered rings and one fivemembered ring. The two independent molecules in the asymmetric unit do not differ significantly.

Comment

This paper, part of a systematic study of bioactive metabolites from Canary Island ferns, presents the results of a structural study of filic-3-ene, (I), a triterpene hydrocarbon isolated from *Davallia canariensis* as a minor component (Bermejo, 1998). This fern is called 'batatilla' locally and features in traditional medicine as having emollient, aperient, restorative and expectorant properties (Pérez de Paz & Medina, 1988). Xanthones are known to occur frequently in the *Davallia* genus (Soeder, 1985).

Filic-3-ene (or 3-filicene) was isolated from Adiantum monochlamys (Ageta et al., 1964) and from Adiantum pedatum (Ageta & Iwata, 1966). The structural model was established by these authors by means of chemical and spectroscopic investigations and is now confirmed by our X-ray analysis. We were not able to determine the absolute stereochemistry by X-ray methods and the configuration shown here was chosen to be in accord with that reported in previous chemical studies (Ageta et al., 1964; Ageta & Iwata, 1966).

After extraction followed by chromatography on silica gel to afford filic-3-ene as a colourless oil, crystals were grown from a benzene/acetone mixture; there are two molecules, A and B, in the asymmetric unit with remarkably similar conformations overall, including the substituents. A quantitative measure of the similarity of the two molecules (A and B) was obtained using a leastsquares fit. The weighted r.m.s. deviation was 0.0663 Å with 0.202 Å for maximum deviation in 30 C atoms. All bond lengths and angles are in the expected ranges and need no further discussion.

In the molecules (see Fig. 1) which involve the pentacyclic ring system A-E, one endocyclic double bond C3=C4 was identified, indicated by the bond length of 1.307 (8) in molecule A and 1.323 (7) Å in molecule B.

Fig. 1. A perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.